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ABSTRACT

A novel 2-D rational filter design technique
is presented which makes use of a reflection-coef-
ficient function (RCF) representation for the
filter transfer function. The design problem
is formulated in the frequency domain. A least-
square error criterion is used though the usual
error measure is augmented with barrier functions.
These act to restrict the domain of approximation
to the set of stable filters. Construction of
suitable barrier functions is facilitated by the
RCF characterization.

INTRODUCTION

This paper presents a frequency-domainmethod

*
for the desl of two-dimensional rational digital
filters. Oue” o space limitations, its applica-
tion to design in magnitude only is described. It
has been used successfully for allpass filter
design as well [1], and can be extended to simul-
taneous design in magnitude and phase.

The method presented here departs from pre-
vious efforts at recursive filter design in the
manner of output mask representatlon. Usually
these masks are specified in terms of difference
equation coefficients. Here they will be charac-
terized in terms of parameters defining reflection
coefficient functions (RCFS) in a 2-O extension of
the Lev{nson recursion. The advantage of the RCF
structure is that the characterization for filter
stability is made explicit in the representation.
Its use affords positive control of stability in
the design process.

The design technique proposed here is an
optimization method employing barrier functions
to restrict the search to the set of stable
filters. Use of the RCF representation facili-
tates the construction of appropriate barrier
functions.

FILTER REPRESENTATION

The filters of interest in this paper satisfy
difference equations of the form:

~~0 ,~~~~la[l,k] y[m-l,n-k]=
= =.

~ ~ b[l,k]x[m-l,n-k]. (1)
k=-N 1=-M

The

are

synsnetryconditions

a[m,n] =

b[m,n] = b[-m,n] =

imposed to reduce the
parameters in the representation. Such condi~

a[-m,n]

b[m,-n] 5 b[-m,-n]

number of free desion

tions enable the design of larger, more accurate
filters, but presuppose quadrant synrnetryin’the
desired magnitude specifications. For many
applications, this condition is not restrictive.

The system transfer functions, H(w,z), corre-
sponding to (1) are ratios of polynomials of the
form

H(w,z) = B(w,z)/A(w,z) (w,Z) CL2 (2)

where, for example, the denominator polynomials
are given by

P R[n]
A(w,z).= ~ ~ a(m,n] W-mz-n. (3)

n=O m=-R[n]

Equations (1) and (2) are standard representa-
tions for 2-D recursive filters. Me chose to use
a different representationfor A(w,z) given by the
following Levinson recursion:
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A(w,z) = Ap(w,z)

At(w,z) = Ai-, (W,Z) + Z-i Ki(w) Ai-, (W,Z-’)

i ..1 ***.* P

A. (W,Z) = A (W,=). (4)

Equation (4) represents a Levinson recursion in
one direction only (the index n). It is really a
family of 1-D Levinson recursions parametrized
by the z-transform variable w. The familiar
scalar reflection coefficients of the 1-D recur-
sion are replaced by reflection coefficient
functions, Ki(w). In this discussion, these
are chosen to be polynomials:

Ki(w) = ~ ~Q Ki [m] w-m (5)
.-

As remarked in the introduction, the RCF rep-
resentation is attractive for its simple stability
criterion. It is easy to show that any synsnetric
half-plane (SHP) polynomial generated by (4) is
minimum phase iff

lKi(w)l < 1 IwI x 1 i=l,...,P. (6)

In addition, the RCF and the standard repre-
sentations are ompletely interchangeablewhen
rational RC

%

are permitted. In this sense, the
RCF represent ion is complete. The restriction
to polynomials is not constraining in practice,
however, since excellent designs have been
obtained.

The output mask in the RCF representation is,
likewise, generated by a Levinson recursion:

a[m,n] = ap [mnl

Q
ai [inn] = ai-l[~,n] + ~ ki[l] ai-l [m-l, i-n]

1=-Q

i=l,...,P

ao[m,n] = a[m,o]. (7)

Since a[m,n] is constrained to be synsnetric,
similar constraints are implied for the reflec-
tion coefficient sequences, {ki[m]}:

ki[m] ‘ ki[-m] i=l,...,P. (8)

The geometry of a typical output mask is shown
in Fig. 1. At first glance, it may not appear to
have a recursible implementation. However, it is
possible to factor A(w,z) into a 1-D polynomial
A’(w) and a nonsyimnetrichalf-plane polynomial
ANSHp(W,Z). A’(w) is obtained by factoring

Ao(w,z), itself a 1-D polynomial: Ao(w,z) =

A’(w) A’(w-l). ANSHp is generated by substi-

tuting’ for Ao(w,z) in the recursion of(4).

This factorization leads to an implementationas
a cascade of two recursible filters.

A(w,z) also has a lattice structure implemen-
tation due to its characterizationwith a Levinson
recursion [1,2]. The lattice implementation is
significantlymore efficient than the correspond-
ing difference equation implementation.

FORMULATION OF THE OESIGN PROBLEM

The objective of the design problem is to
approximate a given ideal magnitude characteris-
tic, I(Y,sl)with IF(Y,Q)I, the magnitude of the
rational filter frequency response. From equation
(2), the frequency response is given by

F(Y,o) = H(ejy,eJQ) y,ficIo,T].

Due to the assumed synsnetryconstraints, the
approximation problem is specified completely on
the first quadrant of the frequency plane.

For concreteness, I(Y,i2)is now taken to be
piecewise constant, assuming a value of one in a
desired passband and zero in a stopband. The
passband and stopband are assumed to be separated
by a transition region. A suitable cho<ce of
these regions for the design of a fan filter is
shown in Fig. 2.

In addition, an error norm is chosen to
measure the agreement between I(Y,Q) and
lF(Y,fi)l:

E(~) =
J

(1-IF(Y,Q)12)2dY dfl

PASS

+G
1

lF(Y,il)12dYdn, (9)

STOP

where G is a relative weighting between the pass-
band and the stopband, and c is the vector of par-t ameters defining H(w,z). W~th this formulation,
the design objective is to find a~* minimizing E
subject to the stability constraints of (6).

The barrier function method is well suited to
solving this kind of constrained minimization
problem. In this approach, the original problem
of constrained minimization is approximated by
one of unconstrained minimization. The design
criterion E is augmented with a function which is
negligible on most of the interior of the feasible
region, but becomes sharply larger near to and
finally infinite on the boundary. Thus, a descent
optimization scheme starting with a point in the
interior of the feasible set is forced to select
among points in the interior.

In the filter design context, the constraints
to be observed are (from (6) and (8)):
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-1 <Ki(ejy) < 1 i=l,...,P Y E[o,ll].

For any particular V, the feasible set is the
pth order Cartesian product of the open interval
(-1,1). Since the feasible set is not compact,
the destgn problem as formulated may not have a
solution vector c*. This problem is ameliorated
by allowing the?easible set to include its
boundary (i.e., marginally stable filters).

For any particular constraints and frequency
Y, a suitable barrier function is:

r3i(~*p,Y) “J- ‘
M 1-K; (eJy)

(lo)

and is shown in Fig. 3. This function is infinite
on the boundary of the feasible set for Ki, and
may be made as small as desired in the interior
by varying the accuracy parameter p. An aggre-
gate barrier function for all the constraints may
be found by integrating the 13iover all frequen-
cies Y and sumning over i:

n
r3(~,li) = ! J Bi(S,IJ,V) dy.

i=l o
(11)

In the modified design problem, the criterion
E is replaced=by

-t
E’(@ = E(Q + I@d

and E’ is min~mized without constraints. The
larger is p, the more closely E’ approximates
E, and the more closely the solution vector S*
for the modified problem will approach that for
the orginal constrained minimization problem.
However, for large p, the minimization problem
may become ill-conditioned if c* is close to the
boundary. Optimization techni@es used to solve
the problem may then converge very slowly. In
practice, experimentation is required to find a
suitable choice for v.

The numerical solution of the design problem
requires that a discretization scheme be adopted.
For the example shown in the next section, the
continuous frequency domain {(Y,f2): Y,flc [O,n]}
was replaced by a 33 x 33 grid of points and the
integrals of (9) and (11) were approximated by3 sums. The self-scaling quasi-Newton method
described in [3] was used to solve the minimiza-
tion problem. This method requires function and

● gradient calculations. An analytical expression
for the gradient of E’ can be derived, but is not
included here due to its length.

EXAMPLE

To verify the capabilities of the method
proposed, a 90” fan filter with 5 RCF’S is pre-
sented. The design specifications are sunsnarized
in Table 1, and the performance data in Table 2.
The operation counts and storage requirements
given are for a lattice implementation.

The 55 parameter fan filter was the largest
attempted, requiring about an hour of CPU time to
design on a PDP-11/55. No attempt was made to
optimize the design algorithm for speed. For
comparable designs, see [4]. The passband and
stopband specificationsfor this filter are shown
in Fig. 2. Figures 4 and 5 are a linear contour
plot and a linear perspective plot (contour inter-
val .1) of the filter magnitude, respectively.

Apart from the apparently excellent magnitude
characteristics obtained, this method affords
positive control of stability. This is demonstra-
ted in Fig. 6which displays the 5RCF’S of the
fan filter. Since these lie between -1 and 1,
the filter is guaranteed to be stable.

TABLE 1. Desi~n Parameters

105
:
M :
N 4

5
: 4
R[o] 3

Total parameters 55
Transition bandwidth m/8

TABLE 2. Filter Performance

Passband Ripple 1%
Stopband Attenuation >34 db
Multiplies/Output Point 84
Adds/Output Point 178
Rows of Storage 20
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Fig. 1 Filter Masks
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Fig. 2 Fan Filter Specifications
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Fig. 4 Magnitude Contour Plot
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Fig, 5 Magnitude Perspective Plot
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Fig. 6 Reflection Coefficient Functions


